100+ Master’s Level Experts in Chemistry And Related Subjects Will Do Your Written Homework in 3-6 Hours

No matter what kind of academic paper you need, it is simple and secure to hire an essay writer for a price you can afford at Chemhomeworkhelp. Save more time for yourself.






Basic features

  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support

Ondemand options

  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading

Paper Format

  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Affordable prices


$10 / PAGE


$13 / PAGE

Our prices depend on the urgency of your assignment, your academic level, the course subject, and the length of the assignment. Basically, more complex assignments will cost more than simpler ones. The level of expertise is also a major determinant of the price of your assignment.

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.


Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:

Chemistry Homework Help- Chemistry Answers

College students looking for chemistry homework help tend to find specific topics uncomfortable and difficult to comprehend. Hiring experts online becomes the best option as they provide comprehensive and procedural solutions enabling students to grasp readily. Besides, it results in the submission of top-quality chemistry assignments suitable for students to score excellent grades in the subject. If you find any chemistry assignment tricky and with the potential to earn you undesirable grades, considering chemistry homework help online is essential.

With chemistry homework help, students get a seamless approach to submitting flawless and high-quality papers that significantly boost their overall score. Yet, it is essential to learn about a platform that delivers the best chemistry assignment help services. Here is what to know about an online assignment help service that gives first-rate chemistry solutions.


Get Quality Chemistry Homework Help Online

Most students term chemistry as an intriguing science subject full of exigent formulas, atoms, elements, chemicals, molecules, and compounds. Some students even find the subject challenging during the introductory period before getting to study independent concepts. Such a reputation has led students often asking, ‘can you do chemistry homework and deliver good quality papers?’ to anyone capable of helping them.

Chemhomeworkhelp.com understands such scenarios hence comprises a well-informed, passionate, and experienced team of chemistry helpers. They understand the chemistry subject well and can provide homework help to students seeking professional chemistry help online. Our chemistry experts can handle the assignment efficiently while providing explanations for a better understanding. Coupled with perfectly formatted, unique, and immaculate chemistry papers, you get top-quality chemistry papers that earn you the grade you desire.


Find Chemistry Help for All Your Chemistry Problems with Ease

Several chemistry homework help platforms promise to deliver the best services, but a few keep their end of the bargain. Unlike such services, Chemhomeworkhelp.com never disappoints whenever you need help with chemistry homework on our platform. But what makes us unique from the competition?

  • Guaranteed Excellent Grades: Different students have varying chemistry assignments that can affect their final results when they score low. Our chemistry homework helper can help submit the best paper for top grades.
  • Money-Back Guarantee: Whenever you pay for chemistry assignment help, you expect the best worth your money. Chemhomeworkhelp.com ensures you get the best service; if not, we’ll refund your money. We also offer refunds if you make double payments to ensure you are always satisfied with us.
  • Save Time: Getting research materials and finding time to write your paper can be time-consuming. The best approach is hiring an expert to help you with such instances and save you valuable time.
  • 24/7 Customer Support: When getting help with chemistry homework, you may, at times, require detailed solutions from company representatives. We ensure you get prompt customer support as we have reliable customer support to answer queries and complaints around the clock.


Untitled design 26

Find the Best Chemistry Homework Helpers for Your Chemistry Tests and Exams

Typically, most students find chemistry subject overwhelming, more so when assigned assignments that seem undoable. Some even have a bad attitude towards the subject, making it even harder to solve simple tests. This is the primary reason why most of them opt for chemistry homework help websites that offer such services.

When you hire the right platform, you gain access to the best chemistry tutor or helper who can make the subject enjoyable, simple, and exciting. Notably, you’ll get new ideas on how to handle such problems prepared procedurally. Online chemistry tutors can provide stepwise approaches while allowing you to get detailed explanations on some topics you find problematic. In turn, students can attend different chemistry exams and score high in this subject.

The Process of Paying Someone to Do My Chemistry Homework for Me

If the deadline is imminent and you have a chemistry assignment yet to be completed, hiring an expert becomes the best possible solution. But you can become confused wondering how to access professionals at Chemhomeworkhelp.com. The process is straightforward, whether you need high school or college chemistry homework help. However, paying our exerts depends on your assignment’s nature; soft copy, hard copy, or online class.

  • Soft Copy Chemistry Assignment: If you have a soft copy assignment in PDF, word document, or any other format, you can readily attach your chemistry assignment through the order form or mail it to us. Our customer support will evaluate your assignment and provide a quote. After payments, a chemistry paper will get to work on your paper immediately.
  • Hard Copy Assignments: For hard copy chemistry assignments, you need to take a clear and high-quality photo of the homework and attach it through our order form. In case you experience any difficulties, feel free to contact us for assistance.
  • Chemistry Online Classes: We also offer online classes for chemistry problems, which are solved in real-time. With this, you need to provide your login credentials, and we’ll assess your assignment and later provide a price quote. After settling your payments, our chemistry tutors will work on your assignment and deliver within your timeframe.

Finding Chemistry Homework Help Is Easy.

Today, chemistry homework help has become an essential tool for students to succeed in the subject. This is because online chemistry helpers simplify existing problems, making them seem simpler. Sequentially, students discover effective means of handling such problems and score high grades.

So, the next time you say, ‘I need help with my chemistry homework,’ Chemhomeworkhelp.com is the place to be as you’ll never regret choosing us. Let us know what you need, and we’ll gladly assign our proficient writers specializing in the topic to handle the problem for you. That said, our chemistry experts can provide below academic help within the subject.

Help with Analytical Chemistry Homework

Analytical chemistry is an approach used in science to determine a given substance or material’s chemical composition. It involves loads of lab work to separate, extract, residue, and filtrate while using different instruments to analyze either qualitative or quantitative. Lab reports hence come in to showcase your results to your professor. If you find it hard to do so, Chemhomeworkhelp.com can help you submit the best lab report.

Help with Physical Chemistry Homework

This is where physics interacts with chemistry, and students unfamiliar with physics basics are likely to fail. Typically, this chemistry concept focuses on molecular levels and energy exchange, which are the most difficult assignments. When you face such problems, the first thing is trying to learn where to get help with chemistry homework and get the grades you desire. We can help you understand the principles of physics chemistry and submit quality assignments.

Help with Quantum Chemistry Homework

It is no doubt quantum chemistry is the most complex topic as it combines both theory and lab reports, including quantum mechanics and physical models. It also includes computation chemistry and quantum theories, atoms and molecules. When assigned a quantum chemistry homework, you may become bemused and begin searching ‘quantum homework help chemistry,’ intending to find helpers online. Save the hassle and stress and hire a quantum chemistry expert at Chemhomeworkhelp.com.

Help with Organic Chemistry Homework

Organic chemistry is the study of organic compounds, including finding individual structures and learning how they react. Several organic concepts, such as planar geometry and hybridization, are challenging to students. With this, it requires organic chemistry homework help to enable students to ease through complex concepts. Chemhomeworkhelp.com consists of organic chemistry tutors to provide real-time solutions and written solutions from our top-rated chemistry helpers.

Help with Inorganic Chemistry Homework

Homework help high school chemistry, including colleges and universities, applies to inorganic chemistry, which involves compounds without C-H bonds. Like organic chemistry, students struggling with inorganic chemistry assignments can use our services to get prompt solutions from our experts. Chemhomeworkhelp.com hires the best team to ensure you get the best from us for inorganic chemistry assignment help.

Help with Chemistry Homework on Any Topic

Several other chemistry topics, including polymer chemistry and surface chemistry, can be uncomfortable to students. At Chemhomeworkhelp.com, we can help you get through any topic as we have highly qualified and chemistry experts on our platform. Besides, we offer chemistry homework help chat that ensures we remain in touch with your writer or interact with a chemistry tutor swiftly.

Can You Make My Homework Look Better?

Nothing makes Chemhomeworkhelp.com stand out in the industry than delivering premier chemistry assignments to students from different study levels. Whether you need AP chemistry homework help or have a problem with particular topics, we are who call. We have the best writers who provide procedural solutions to the problems while writing it perfectly without any grammatical errors. Besides, we provide comprehensive checking, editing, and proofreading services to guarantee authentic and flawless assignments even when you seek chemistry homework help balancing equations.

That said, yes! We can make your homework better and with higher chances of earning better grades. Our online chemistry tutors also play a vital role in providing real-time solutions to assignments on our websites, unlike using a chemistry help app. Chemhomeworkhelp.com, therefore, is the best platform that gives the best chemistry homework help in the industry.

Chemistry homework help has proven to become essential for students finding specific chemistry assignments tricky. Besides, it accompanies several benefits than getting top-quality papers to earn an A or B in the overall score. Chemhomeworkhelp.com, therefore, remains the right platform that gives unrivaled chemistry homework solutions to different students.


We know how important any deadline is to you; that’s why everyone in our company has their tasks and perform them promptly to provide you with the required assistance on time. We even have an urgent delivery option for short essays, term papers, or research papers needed within 8 to 24 hours.

We appreciate that you have chosen our cheap essay service, and will provide you with high-quality and low-cost custom essays, research papers, term papers, speeches, book reports, and other academic assignments for sale.

24/7 support

We provide affordable writing services for students around the world. That’s why we work without a break to help you at any time, wherever you are located. Contact us for cheap writing assistance.

"; Chemistry Practice Questions-Analysis Of Carcinogenic Sudan Azo Dyes In Food Products - Chem Homework Help
Chemistry practice questions-Analysis of Carcinogenic Sudan Azo Dyes in Food Products

Analysis of Carcinogenic Sudan Azo Dyes in Food Products



Sudan azo dyes, categorized as I, II, III and IV are some of the most appealing coloring agents in the field of food industry. The use of these dyes as colorants and additives enhances the uniformity of color in foods, improves the appearance of foods and thereby promoting their salability. Use of these dyes, however, presents harmful health effects of mutagenicity, carcinogenicity and toxicity. They have since been banned from use although a few cases of their illegal are still being reported. In the present study, the adulteration of selected red palm oil and palm cream in Ghana was investigated by quantifying the amount of Sudan IV present in the spiked and non-spiked samples. The samples were prepared by Solid-Phase extraction and analyzed by HPLC.

The results obtained indicated no observed presence of Sudan IV dye in both the neat oil palm oil and palm cream. Even though the method was not validated by determining the limit of detection, the correlation factor for the calibration curves of 0.99 suggests the possibility of the results being reproducible. It was therefore concluded that both the red palm oil and the palm cream considered in the study might not have Sudan IV dye.

1.0 Introduction

Color is one of the most distinguished features of food products in the food industry. Many coloring agents are applied to various foods to improve the appearance and therefore promote the salability of the products. Coloring agents are also added to reinforce and enhance uniformity of color in foods that have color already present in them. One of such groups of dyes used as colorants in the food industry is Sudan Azo dyes.

Azo dyes are synthetic compounds containing diazotized amine (-N=N-) bonded to hydrocarbons. Generally, azo dyes are characterized by one or more azo bonds. The conjugation of their bonds make the azo dyes shine with characteristic colors, one that gives them a greater appeal to consumers. Azo dyes are grouped into several categories defined by the fibers for which they have affinity, which depends on the other variations in chemical features. Sudan azo dyes (I, II, III, and IV) are fat-soluble azo dyes, widely applied for coloring food products, triglycerides and lipoproteins (Hunger et al. 2000). However, the use of Sudan dyes has been banned worldwide and is now classified by the International Agency for Research on Cancer (IARC) as a Class-III carcinogen. Even with the ban on the use of azo dyes, Sudan azo dyes continue being use used illegally and have been reported in cases of adulteration.

Fig.A: Structures of Sudan I, II, III and IV

The first case of adulteration was identified in chilli powder in 2003, in which the contaminant was Sudan I. It was established that the contaminated chili powder, with brand name genus, had its origins from India. Analytical studies on chili powder showed Sudan I adulteration concentration of 4000 mg kg−1 (RASFF 2003; ASTA 2005). The shocking revelations forced governments to impose rules on the quality requirements of imported chili powder to ensure that the said product did not contain any Sudan I dye (European Commission 2003). In 2004, this requirement was extended for Sudan II, III and IV. More products were also incorporated for testing including palm oil and the genus Curcuma in 2004 (turmeric) (European Commission 2005). Unauthorised colours continue to be reported in the Rapid Alert System for Food and Feed (RASFF) portal, with a total of 16 notifications in 2014 and 2015 (RASFF 2015).

Studies on animal models have shown that Sudan dyes are carcinogenic, mutagenic and toxic substances. The listed harmful effects of these azo dyes are reported to stem from the metabolism of these dyes once the animals are exposed to them. Metabolism of azo dyes starts with an enzyme catalyzed reduction of azo bonds by azoreductase. This reduction process of azo bonds is believed to be responsible for the harmful effects manifested by the dyes. Although many studies on the harmful effects of these dyes has been done on Sudan I, many researchers seem to concur that the other forms of Sudan dyes are potentially carcinogenic since all their chemical structures resemble each other.

The continued use of Sudan azo dyes is not only a threat to human life due to their harmful health effects, but also a potential hazard to the environment especially when released to the water system. Humans get exposed to these dyes through ingestion, skin contact and/or inhalation. Exposure through ingestion, as food additives and colorants, is one of the most ways in which these dyes get into the human system. Although the use of these dyes has since been banned in most countries, they somehow get into the food market illegally. As a result, these dyes have been reported in foods such as palm oils, chili powders, eggs, Worcestershire sauce, garlic curry sauce, among others as contaminants and adulterant (Arora & Bharti 2005; Mishra et al. 2007). Still the food products are adulterating with Sudan dyes to enhance their color and make huge market. In this research we have received some food products from Nutrition department with different brand names to identify Sudan dye adulterants in them by using a suitable chromatographic method (Gesualdi 2016). In Spring 20 research, we had analysed 2 different food manufacturers samples and one other manufacturer sample in Fall 20 research to identify Sudan I and IV dye adulterants if any. Same HPLC method was used for analysing all the samples, but Sample preparations were changed slightly. method was used Before the HPLC technique, Tthe samples were pre-treated using solid-phase extraction (SPE). The SPE procedure is mostly employed for extraction, concentration, and fractioning of organic compounds (Andrade-Eir8oa et al. 641; Rocha et al. 803. In the present study we report studies on quantification of Sudan IV in potentially adulterated red palm oils and palm soup cream. Sample bottles were not heated in a 66°C oven for until the oil liquefied as mentioned in method (Gesualdi 2016). In current study, method recovery was not satisfied with lower LOD’s as previous methods (Gesualdi 2016). Comment by David Cunningham: Multiple phrases and sentences. Remove capital letters within the sentence. Please revise. Comment by David Cunningham: Your introduction only includes one sentence on what was done on the project. Expand this to include information of what was done in Spring and Fall. Include the goal(s) of your work. Indicate that the method you used was based on (Genualdi 2016) and indicate how your work was different than work reported in this earlier publication. Comment by David Cunningham: Comment by Gottapu, Tej: Included more information

1.1 Materials and Methods

1.1.1 Chemicals and Reagents

The solvents used in this study include methanol (HPLC grade), hexane, diethyl ether, and ethyl acetate.

1.1.2 Standards

Sudan I and IV analytical standards of purity greater than 96% were purchased from Sigma Aldrich. Stock solutions of these standards were prepared in methanol to ensure complete solubility of the Sudan dyes. Samples and prepared standards were stored at Room temperature.

Preparation of Sudan IV Stock Std Solution:

S20: Accurately weighed 1.17 mg of Sudan IV and transferred to a vial and dissolved in 20.0 ml methanol.

F20: Accurately weighed 2.12 mg of Sudan IV and transferred to a vial and dissolved in 20.0 ml methanol.

Preparation of Sudan I Stock Std Solution:

S20: Accurately weighed 2.25 mg of Sudan I and transferred to a vial and dissolved in 20.0 ml methanol.

F20: Accurately weighed 2.08 mg of Sudan I and transferred to a vial and dissolved in 20.0 ml methanol.

Mixed Standard: Preparation:

Mixed 5ml of each Sudan std stock I&IV then made further dilutions to get 50%, 25% of mixed standard solution. Comment by David Cunningham: Also include S2020 preps: Worksheet Soln Prep and Cal Curves Comment by Gottapu, Tej: Excel graph included with cal curve and preparations

1.1.2 Samples and Preparation

The samples for this study included fresh palm fruit extract from Neat Food Company in Ghana, and Praise Palm Cream from Praise Export Services Limited in Ghana, Praise samples well. The red palm oil samples were unrefined and displayed a red color was due to originally existing carotenes. In their unrefined form, adulteration with Sudan dyes would enhance the red color make the palm oil appear better and nutritionally richer.

Sample Preparation 1:

Weighed and transferred 5.182 g of sample to a vial and dissolved in 5.252 g of Hexane. Comment by David Cunningham: F20 prep. Please include Spring 20 prep. Comment by Gottapu, Tej: Included

Sample Preparation 2 (S20):

Weighed and transferred 0.95 g of sample to a vial and dissolved in 8.55 g of Hexane. Comment by David Cunningham: F20 prep. Please include Spring 20 prep. Comment by Gottapu, Tej: Included

Spiked Sample Preparation 1:

For sample preparation, 5.138 g of red palm oil sample was weighed and dissolved in 5.252g of hexane. The sample was then spiked with 100 µl of Sudan I and 100 µl of Sudan IV and mixed well and allowed to settle down. Comment by David Cunningham: Include S20 prep Comment by Gottapu, Tej: Included

Spiked Sample Preparation 2 (S20):

For sample preparation, 1.05 g of red palm oil sample was weighed and dissolved in 9.5 g of hexane. The sample was then spiked with 100 µl of Sudan IV and mixed well and allowed to settle down. Comment by David Cunningham: Include S20 prep Comment by Gottapu, Tej: Included

Spiked sample also extracted from SPE by using Ethyl Ether and Ethyl Acetate wash.

1.1.3 Solid-Phase Extraction (SPE) Clean-up and Preparation of Extracts

Solid Phase Extraction was performed using LC-Alumina-B SPE tubes (1 g/3 ml) with Cartridge being conditioned with 6mL methanol, 6mL ethyl acetate and 6mL hexane solvents. Sample and Spiked samples were extracted by using SPE Ethyl Acetate and Ethyl Ether washes. After conditioning, the 3mL of clear supernatant prepared samples were introduced into the SPE column and washed with 6mL hexane and 6mL ethyl ether added in 2 ml increments and finally by 2mL ethyl acetate. Hexane filtrate discarded, and last 2 ml of ethyl ether and 2 ml of ethyl acetate was collected for HPLC analysis. These fractions were set aside, and the final eluent of Sudan dyes was collected from the column with ethyl acetate/methanol (90:10) solvent system.4-2 elution volumes for this system were collected. Comment by David Cunningham: Samples tested should probably be after 1st sentence in this paragraph. Also, include S20 sample Comment by Gottapu, Tej: Changed Comment by David Cunningham: Indicate this was the (clear?) hexane layer. Please include sample added S20 (see worksheet: Soln Prep and Cal Curves) Comment by Gottapu, Tej: included Comment by David Cunningham: Added in 2-mL increments? Comment by Gottapu, Tej: Elobarated Comment by David Cunningham: These fractions – this is unclear. Please describe fractions clearly; maybe a table would help. Comment by Gottapu, Tej: Explained with table

Elution solventCollected fractions for the Analysis
Hexane (6ml) added as 2ml incrementsDiscorded
Ehtyl ether (6ml) added as 2 ml increments2ml- Discarded

2ml- Discorded

2ml- collected for HPLC analysis (T1)

Ethyl Acetate (2ml)2ml- collected for HPLC analysis (T2)
Ethyl acetate: Methanol (90:10), added 2ml solvent each wash for 4 times.Named each fraction as T3, T4, T5, T6

Table 1: SPE elution solvents and their collected samples for HPLC analysis

The elution solvent was evaporated until it dried fully and topped up to a mark of 1 ml with methanol (S20 preparation). The eluents were filtered via a 0.2μm PTFE filter prior to inject into the HPLC Comment by David Cunningham: Please describe S20 and F20 prep. You told me that the F20 samples were not dried. Also drying was performed with a Meyer N-Evap Model 111. Comment by Gottapu, Tej: We have collected T2,T3,T4,T5 eluents and kept in wooden test tube holder. Samples were dried when we came and see next day. We did not dilute with 1ml methanol and injected due to trouble with the HPLC. Comment by David Cunningham: Add “…prior to injection into the HPLC.” Comment by Gottapu, Tej: added

1.1.4 High Performance Liquid Chromatography (HPLC) Analysis

HPLC (Shimadzu) was employed in the quantification of the Sudan I and IV dyes in the red palm oil. The equipment comprised degasser, a gradient pump, Injection valve and dual wavelength UV detector (Esen et al. 73; Moldoveanu and Victor 9; Hu et al. 2126; Weisz et al. 1835). The chromatographic conditions involved are Comment by David Cunningham: This is background information, more suitable for the introduction. Comment by Gottapu, Tej: Moved to introduction Comment by David Cunningham: Correct: Injection valve Comment by Gottapu, Tej: Corrected Comment by David Cunningham: Change to : dual wavelength UV detector Comment by Gottapu, Tej: Corrected Comment by David Cunningham: I’m not sure why these references are here Comment by Gottapu, Tej: about HPLC and chromatographic techniques Comment by David Cunningham: Include all HPLC cionditions: detector wavelength, injection volume and flow rate. Also, brand and dimensions of CCC-18 column. And analysis time. Comment by Gottapu, Tej: Included HPLC conditions

Mobile Phase: 95% methanol: 5% pH 5 buffer

Column: C18, 250mm×4.6×mm,5um

Detector Wavelength: 340 nm

Injection Volume: 10 µl

Flow Rate: 0.8 ml/min

Run Time: 15 min

The use of high organic HPLC mobile phase (95% methanol, 5% pH 5 buffer) and C-18 column, wavelength 340 nm, flow 0.8 ml/min. After the chromatographic specifications, the calibration curves were plotted in the 50-5000 ppb range at 340 nm with an analysis time of 15 minutes. Finally, the presence of Sudan IV in different quantities of the prepared palm oil and cream were determined from the generated chromatograms. Following samples were injected into HPLC Comment by David Cunningham: Calibration curves are a result. Perhaps include a table with all samples and standards which were injected in S20 and F20. For standards that were injected, the table would include the concentration of dye(s). The concentrations should be in units of mass/volume, for example ug/mL or ng/mL. Comment by Gottapu, Tej: Detailed table has included


RUNNING HEAD: Analysis of Carcinogenic Sudan Azo Dyes In Food Products



Fall20 SamplesSpring20 Samples
Sudan I stdMethanol blank
Sudan IV stdMethanol blank 2
Sudan std I&IV 25%250 S4 S1 Carotene
Sudan std I&IV 50%500 S4 S1 Carotene
Sudan std I&IV 100%1000 S4 S1 Carotene
Spiked sample collected from Ethyl Ether wash5000 S4 S1 Carotene
Spiked sample collected from Ethyl Acetate wash2500 S4 1/2 S1 1/2Carotene
Sample collected from Ethyl Ether washMix SI & SIV
Sample collected from Ethyl Acetate washMix SI & SIV carotene
NA10 ng/mL SIV 180 S1
25 ng/mL SIV 180 S1
50 ng/mL SIV 180 S1
100 ng/mL SIV 180 S1
250 ng/mL SIV 450 S1
Spike 1 sample
Unspiked1 sample
Spike 2 Sample
Unspike 2 Sample
Spike 3 Sample
Unspike 3 Sample
Spike 4 Sample
Unspike 4 Sample

Table 2: List of Samples injected into HPLC analysis

1.2 Results and Discussion

Even though Sudan dyes have different chemical structures from carotenoids, they have similar solubility features and spectral absorption characteristic range. This makes it difficult to discriminate and detect them when present in natural matrices unless selective separation methods such as SPE and HPLC are applied. This is what informed the rigorous sample preparation that was done prior to analysis.

The calibration of Sudan I and Sudan IV azo dyes was successful with results showing calibration graphs with correlation factors of 0.9969 and 0.9952(S20), 0.9792 and 0.9984(F20) respectively. This suggests that the method could be accurate and that results are reproducible. Usually, results with a correlation factor of less than 0.95 are not accepted since it implies that they cannot be reproduced. The calibration outcome therefore shows that the outcome of the present study can be trusted. Comment by David Cunningham: Also include cal curve from F20 data Comment by Gottapu, Tej: Calibration curve was plotted

a: Sudan I (S20) b: Sudan IV (S20)

c: Sudan I (F20) d: Sudan IV (F20)

Fig.B: Calibration curves for the standards; a for Sudan I and b for Sudan IV

Upon calibration, the results of the Liquid Chromatography (LC) analysis show that Sudan I and IV elute at retention times of between 5.38-5.41 min and 11.61-11.92 min respectively (Table 3& Fig. 3). In the present study, the variation range was narrow implying that the method was consistent and accurate. Comment by David Cunningham: Include a table with retention times for all standards S20, samples S20 and samples and standards F20. I would also include the peak areas of Sudan I and IV in this table. Comment by Gottapu, Tej: Detailed table was included

Fig. C: Chromatograms showing retention times for elution of Sudan I and IV

A summary of the retention times and peak areas of the standards and red palm oil sample in a number of trials is shown in table 3 below. All chromatograms are included in appendix. Comment by David Cunningham: It isn’t clear what these samples are since these names are not in the text. As per above, tables with all samples seems better. Or, include additional information on why data from some samples is grouped together. For the red palm oil sample, additional information is needed on the fraction tested. Are these S20 or F20 samples? Comment by Gottapu, Tej: This is for S20 std & samples. Now I added table for injected samples and another table for their results.

Standard/SampleRetention TimePeak Area
250 S4 S1 Carotene (Figure 3)5.400&11.72248464&6919
500 S4 S1 Carotene (Figure 4)5.366&11.58525229&15046
1000 S4 S1 Carotene (Figure 5)3.374&11.64650477&27299
5000 S4 S1 Carotene (Figure 6)5.372&11.56544355&146681
2500 S4 1/2 S1 1/2Carotene (Figure 7)5.372&11.53922850&63430
Mix SI& SIV (Figure 8)5.362&11.50635258&29252
Mix SI& SIV Carotene (Figure 9)5.632&11.83323697&13365
10 ng/mL SIV 180 S1 (Figure 10)NDNA
25 ng/mL SIV 180 S1 (Figure 11)NDNA
50 ng/mL SIV 180 S1 (Figure 12)5.386&11.6953555&1341
100 ng/mL SIV 180 S1 (Figure 13)5.361&11.5085651&2313
250 ng/mL SIV 450 S1 (Figure 14)5.301&11.07713307&7122
Spike 1 Sample (Figure 15)NDNA
Unspiked1 Sample (Figure 16)NDNA
Spike 2 Sample (Figure 17)NDNA
Un spike 2 Sample (Figure 18)NDNA
Spike 3 Sample (Figure 19)NDNA
Un spike 3 Sample (Figure 20)NDNA
Spike 4 Sample (Figure 21)NDNA
Unspike 4 Sample (Figure 22)NDNA

Table 3: Retention times and peak areas for various red palm oil sample preparations and


From the results, it’s clear that the neat red palm oil sample obtained did not show presence of either Sudan I or IV dyes. However, the absence Sudan IV dye in the spiked sample of the ethyl acetate wash casts aspersions as to whether the method was able to accurately quantify Sudan IV dye. Limit of detection was 50ng/ml, hence there was no Sudan IV adulterant with the limit of 50ng/ml of sample. It could not be confirmed whether the oil had zero quantities of Sudan IV because the Limit of detection (LOD) was not established for the chosen method of quantification. Comment by David Cunningham: Better if also include peak areas in data and analysis to demonstrate your points. Comment by Gottapu, Tej: Added peak areas Comment by David Cunningham: Not correct; see question in email. Comment by David Cunningham: Could a limit of detection be determined from the standards? Comment by Gottapu, Tej: Comment by Gottapu, Tej: No because LOD level samples were not prepared.

The chromatograms for unspiked palm cream and that of the Palm cream spiked at 1000ng Sudan IV/g are shown in Fig. 4 below. The developed HPLC method provided excellent separation of the individual components in the palm cream. Some of the individual components that were clearly separated along with the Sudan azo dyes are the carotenoid pigments (Mingzhu, et al., 2016). From the obtained results, the palm cream did not contain Sudan IV azo dyes. It was therefore concluded that the palm cream considered in the present study might not have Sudan I and IV azo dyes. This was, however, not validated by determining the limit of detection.

Fig. D: The Chromatogram for the Palm Cream

Standards/SamplesRetention TimePeak Area
Sudan I std (Figure 23)Sudan IV peak at 5.41 min2931042
Sudan IV std (Figure 24)Sudan IV peak at 11.92 min12265713
100% Sudan std I & IV (Figure 25)5.38 & 11.66 min1083100 & 2030131
50% Sudan std I & IV (Figure 26)5.42 & 11.79 min678256 & 1076363
25% Sudan std I & IV (Figure 27)5.41 & 11.72268342 & 486254
Sudan I and IV from spiked Sample

preparation- Ethyl ether wash (Figure 28)

5.38 & 11.61 min700 & 36451
Sudan I and IV from spiked Sample preparation- Ethyl Acetate wash (Figure 29)Sudan IV at 11.718 min, Sudan I not detected4104
Sample Ethyl Ether wash (Figure 30)11.70 min1663
Sample Ethyl Acetate wash (Figure 31)NDNA

Table 4: The results from the analysis of red palm oil sample (tested in Fall)

From the above tabulated results, it is evident that both Sudan I and IV had extracted from palm oil. The different concentrations of Sudan I and IV used for calibration curve. There is a slight change in retention times with good precision( RSD of Sudan I is 0.60 and Sudan IV is 0.65). The spiked ethyl ether sample showed the presence of Sudan I and IV corresponding to the retention times of 5.41 and 11.72 minutes respectively. The spiked sample prepared by ethyl acetate showed the presence of Sudan IV at a retention time of 11.78 minutes, although Sudan I was absent from that sample. The sample from ethyl ether wash thus established the presence of Sudan IV, illustrated by a peak at 11.70 minutes, whereas there was no peak with ethyl acetate wash. Comment by David Cunningham: Please reword; meaning is unclear Comment by David Cunningham: Should a change in concentration result in a change in retention time? Comment by Gottapu, Tej: Change in concentration would not affect the RT, but peak shape may affect with higher concentrations. Comment by David Cunningham: Precision is generally indicated by the relative standard deviation of the results. Please include the relative standard deviations.

Figure E: The Sample Chromatogram Figure F: The Sample Chromatogram

from Ethyl Acetate wash from Ethyl Ether wash

Thus, the above results demonstrated the detection of Sudan I and IV using ethyl ether wash, and Sudan IV was detected solely in ethyl acetate wash.

Peak area of Sudan IV std in spiked sample = 36451

Peak area of Sudan IV in sample from Ethyl ether wash = 1663

Concentration of Sudan IV in spiked sample = 0.106 mg/ml Comment by Gottapu, Tej: I am not sure this calculations, Please help me with this

Concentration of Sudan IV in sample = 0.106 × 1663 / 39451 = 0.0044682 mg/ml

1.3 Conclusion and Recommendation

The analysis of Sudan I and IV azo dyes was successful with calibration graphs giving a correlation factor of 0.99 which indicated a high degree of correlation. This implies that even though the method was not validated by determining the limit of detection, the results reported herein can be reproduced. The results of the present study indicated no observed presence of Sudan IV dye in both the neat oil palm oil and palm cream. It was therefore concluded that both the red palm oil and the palm cream considered in the study might not have Sudan IV dye.

We recommend the use of more accurate methods, such as liquid chromatography-mass spectrometry (LC-MS)/mass spectrometry (MS), Fourier transform infrared spectroscopy (FTIR), and mid-infrared spectroscopy (MIR) to provide further proof or contrary outcome of the same. The use of these techniques would yield accurate results with higher precision since they are more efficient. When FTIR instrumentation combined with the powerful multivariate data analysis methods make this technology ideal for large volume, rapid screening, and minor food components characterization down to parts per billion levels. The MIR is beneficial for simple structural investigation and raw material ingredient or additive identification by library comparison. Comment by David Cunningham: Please revise. IR methods detect all vibrational bands in organic molecules, thus, they perform poorly on mixtures. The palm oil food samples contain many components so IR is not able to measure small amounts of analyte in these samples

Works Cited

Ahmed, F., et al. “Non-destructive FT-IR Analysis of Mono Azo Dyes.” Bulg. Chem. Commun, Vol. 48, No.1, 2016: pp. 71-77.

Al Tamim, Abdullah, et al. “Fast and Simple Method for the Detection and Quantification of 15 Synthetic Dyes in Sauce, Cotton Candy, and Pickle by Liquid Chromatography/Tandem Mass Spectrometry.” Arabian Journal of Chemistry Vol. 13, No.2 (2020: pp, 3882-3888.

Andoh, Sampson Saj, et al. “Qualitative Analysis of Sudan IV in Edible Palm Oil.” Journal of the European Optical Society-Rapid Publications, vol. 15, No.1, 2019: pp. 1-5.

Andrade-Eiroa, Auréa, et al. “Solid-Phase Extraction of Organic Compounds: A Critical Review (Part I).” TrAC Trends in Analytical Chemistry, Vol. 80, No. 1, 2016: pp. 641-654.

Aresta, Antonella, Nicoletta De Vietro, and Carlo Zambonin. “Ultra-Trace Determination of Sudan I, II, III, and IV in Wastewater by Solid-Phase Microextraction (SPME) and on-Line Solid-Phase Extraction (SPE) with High-Performance Liquid Chromatography (HPLC).” Analytical Letters, Vol. 3, No. 1, 2020: pp. 1-12.

Arora S, Bharti S. Effect of mechanical drying on quality of chilli varieties. J Food Sci Technol. 2005; 42:179–182.

ASTA. Sudan Red and related dyes – white paper [Internet]. 2005. [cited 2015 Mar 5].

Dhakal, Sagar, et al. “Detection of Additives and Chemical Contaminants in Turmeric Powder Using FT-IR Spectroscopy.” Foods, Vol. 8, No.5, 2019: pp.143-158.

Esen, Betül, Tülay Oymak, and Emrah Dural. “Determination of Food Colorings in Pharmaceutical Preparations and Food Additives by a Validated HPLC Method.” International Journal of Scientific & Engineering Research, Vol. 9, No. 8, 2018: pp. 72-76.

European Commission. Commission decision of 20 June 2003 on emergency measures regarding hot chilli and hot chilli products. Off J Eur Commun L. 2003:114–115.

European Commission. Commission decision of 23 May 2005 on emergency measures regarding chilli, chilli products, curcuma and palm oil. 2005/402/EC. Off J Eur Commun L. 2005:34–35.

Hu, Mingzhu, et al. “Determination of Sudan Dyes in Juice Samples via Solidification of Ionic Liquid in Microwave-Assisted Liquid-Liquid Microextraction Followed by High-Performance Liquid Chromatography.” Food analytical methods, Vol. 9, No.7, 2016: pp. 2124-2132.

Hunger, K.; Mischke, P.; Rieper, W. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. Azo dyes, 1. General.

Iarc Monographs on the Evaluation of the Carcinogenic Risks to Humans. International Agency for Research on Cancer. Lyon: World Health Organization; 1987.

Lohumi, Santosh, et al. “Quantitative Analysis of Sudan Dye Adulteration in Paprika Powder Using FTIR Spectroscopy.” Food Additives & Contaminants: Part A, Vol. 34, No.5. 2017: pp. 678-686.

Moldoveanu, Serban C., and Victor David. Selection of the HPLC method in chemical analysis. Elsevier, 2016.

Ntrallou, Konstantina, Helen Gika, and Emmanouil Tsochatzis. “Analytical and Sample Preparation Techniques for the Determination of Food Colorants in Food Matrices.” Foods, Vol. 9, No.1, 2020: pp. 58-82.

Oliveira, Marciano M., J. P. Cruz‐Tirado, and Douglas F. Barbin. “Nontargeted Analytical Methods as a Powerful Tool for the Authentication of Spices and Herbs: A Review.” Comprehensive Reviews in Food Science and Food Safety 18.3 (2019): 670-689.

Otero, Paz, et al. “Simultaneous Determination of 23 Azo Dyes in Paprika by Gas Chromatography-Mass Spectrometry.” Food Analytical Methods, Vol. 10, No. 4, 2017: pp. 876-884.

RASFF. Contamination of Worcester sauce by the unauthorised colour Sudan I [Internet]. 2005. [cited 2015 Mar 5].

RASFF. Rapid Alert System for Food and Feed (RASFF), 2003 [Internet]. Luxembourg: Publications Office of the European Union; 2003. Annual report 2003 ed. [cited 2015 Mar 5]

RASFF. Rapid alert system for food and feed (RASFF) – RASFF portal, 2015 [Internet]. Online Searchable Database. 2015. [cited 2016 Jan 4].

Rocha, Fabio RP, et al. “Solid-Phase Extractions in Flow Analysis.” Anais da Academia Brasileira de Ciências, Vol. 90, No.1, 2018, pp. 803-824.

Sudan I consolidated product list from February 2005 recall [Internet]. 2015. [cited 2014 Mar 4].

Susie Genualdi, Shaun MacMahon, Katherine Robbins, Samantha Farris, Nicole Shyong, and Lowri DeJager Method development and survey of Sudan I–IV in palm oil and chilli spices in the Washington, DC, area.

Tran, K.; Young, M.; Neue, U. Effective SPE strategies for LC-MS determination of Sudan dyes in chili products [Internet]. 2005. [cited 2015 Mar 5].

Weisz, Adrian, et al. “Determination of Sudan I and a Newly Synthesized Sudan III Positional Isomer in the Color Additive D&C Red No. 17 Using High-Performance Liquid Chromatography.” Food Additives & Contaminants, Vol. 34, No.11, 2017: pp. 1831-1841.


Figure 1 Methanol Blank

Figure 2 Methanol Blank

Figure 3 250 S4 S1 Carotene

Figure 4 500 S4 S1 Carotene

Figure 5 1000 S4 S1 Carotene

Figure 6 5000 S4 S1 Carotene

Figure 7 2500 S4 1/2 S1 1/2Carotene

Figure 8 Mix SI& SIV

Figure 9 Mix SI & SIV

Figure 10 10 ng/mL SIV 180 S1

Figure 11 25 ng/mL SIV 180 S1

Figure 12 50 ng/mL SIV 180 S1

Figure 13 100 ng/mL SIV 180 S1

Figure 14 250 ng/mL SIV 450 S1

Figure 15 Spike 1 sample

Figure 16 Unspiked1 sample

Figure 17 Spike 2 Sample

Figure 18 Unspike 2 Sample

Figure 19 Spike 3 Sample

Figure 20 Unspike 3 Sample

Figure 21 Spike 4 Sample

Figure 22 Unspike 4 Sample

Figure 23 Sudan I std

Figure 24 Sudan IV std

Figure 25 100% Sudan std I & IV

Figure 26 50% Sudan std I & IV

Figure 27 25% Sudan std I & IV

Figure 28 Sudan I and IV from spiked Sample

preparation- Ethyl ether wash

Figure 29 Sudan I and IV from spiked Sample preparation- Ethyl Acetate wash

Figure 30 Sample Ethyl Ether wash

Figure 31 Sample Ethyl Acetate wash

Calibration Curve, Sudan I

Peak area

0 2.5999999999999999E-2 5.1999999999999998E-2 0.104 0 268342 678256 1083100

Sudan I, mg/ml

Peak Area

Calibration Curve, Sudan IV

Peak area

0 2.6499999999999999E-2 5.2999999999999999E-2 0.106 0 486254 1076363 2030131

Sudn IV, mg/ml

Peak Area




Sudan I






Sudan III









Sudan II












Sudan IV

Order a unique copy of this paper
(550 words)

Approximate price: $22