Complete the III. RESULTS and IV. DISCUSSION sections from Experiment 4. Then use this information to write a Full Formal Report for Experiment 4.Remember, you already calculated preliminary results for Experiment 4.You learned about standard deviation, 95% confidence intervals, outliers, Ftests, and t-tests in Virtual Module A – use these statistical tools as appropriate.Refer to “Writing Laboratory Reports” for guidance on a Full Formal Report. You need to include the following sections in your report:o Titleo Abstract Introduction Experimentalo Results Discussiono Referenceso Supplemental InformationThe actual Wt% will be send tomorrow, you can start by the parts that don’t need %wt.
EXPERIMENT 4: DETERMINATION OF CHLORIDE — GRAVIMETRIC AND VOLUMETRIC METHOD COMPARISON
In this experiment, you will be given a sample of unknown chloride concentration and use BOTH gravimetric and volumetric methods to determine the amount of chloride.
For the gravimetric analysis, you will dissolve the unknown sample, add AgN03 to the solution which will re-precipitate the chloride using into an insoluble form (AgCl), and then weigh your new chloride compound. From this weight, you will be able to calculate the amount of chloride in your initial unknown, and comment on your precision and accuracy during this experiment.
During volumetric analysis, we will also use AgN03, but as a titrant! You will add AgN03 to a solution of unknown chloride concentration, and as precipitate (AgCl) forms in solution, the solid begins to crystalize. Before the equivalence point is reached, some excess ions in the analyte solution (in our case, Cl-) will become adsorbed onto the crystal surfaces, resulting in a net negative surface charge. However, when excess titrant ions (in our case, Ag+) ions are in solution, the positive ions will adsorb onto the crystal surfaces, resulting in a net positive charge. This change from net negative to net positive charge indicates the equivalence point. To ensure adequate surface area of precipitate crystals for adsorption, particle sizes must remain small and suspended in solution.
This experiment uses a certain kind of precipitation titration called a Fajans titration. Fajans titrations use adsorption indicators – anionic dyes that will bind to the net positive precipitate crystals at the titration end point. The adsorption of the anionic dye onto the positively charged precipitate changes the color of the dye. Dichlorofluorescein, the indicator used in this lab, changes from a pale yellow when negatively charged to pink when adsorbed onto the positive precipitate.
Chemicals/Reagents and additional materials required:
1 : 1 v:v ammonia (NH3):water(H20) solution (—100mL per student)
- 6M nitic acid (HN03) (25mL per student)
- silver nitrate (AgN03) solution (AL per student)
Dichlorofluorescein indicator solution (1 dropper bottle per student)
Dextrin (A g per student)
Sodium chloride (NaCl, 58.44 g/mol) (—2 g per student, to be dried)
Unknown sample containing chloride ion (Cl-) (Ag per student, to be dried)
l. EXPERIMENTAL o t 473 9‘
- preparation of filter crucibles and unknown chloride sample:
I. Clean four medium porosity filter crucibles according to the steps below:
- IN A FUME HOOD, fill crucibles with 1:1 aqueous ammonia
sure you place crucibles in a beaker or on a watch glass to prevent spillage ofNH3 solution***); allow it to stand a few minutes, then draw through.
- Rinse by filling several times with deionized water and draw through.
- Place identifying marks on the crucibles with a pencil and dry at 1500C to constant weight.
- IN A FUME HOOD, fill crucibles with 1:1 aqueous ammonia
2. Dry Ag of unknown sample containing chloride at 110 oc for 1 hr.
Cool
sample in a desiccator.
- Gravimetric
Lab Week
- Weigh four (—0.4g) unknown samples into 400 ml beakers to the nearest
0.1mg. To each, add 200 ml deionized water and 5ml 6M HN03. Dissolve. ****Thefollowingprocedure must be performed in semidarkness* ***
Slowly add the appropriate amount of 5% AgN03 (aq) to the solution wi good stirring
You want to add enough AgN03 to completely precipitate your dissolved Cl- as AgC1.
- After a few minutes, check for complete precipitation by adding a few more drops of the AgN03 (aq).
- If more AgCl forms, add another 5 ml of the AgN03 (aq), wait a few minutes, and test again.
- Repeat if necessary until an excess of AgN03 (aq) is present.
- Store the covered beakers in the darkness overnight or longer.
Lab Week 2
- Prepare a wash solution by adding 2ml 6M HN03 to a wash bottle of deionized
water.
- Once again, test the supernatant for completeness of precipitation with a few drops of AgN03 (aq).
- Decant the supernatant through one of the weighed filter crucibles. Then, wash the precipitate in the beaker with a few milliliters of the wash solution, again decanting the liquid through the filter crucible. Repeat the washing process —5 times.
- Quantitatively transfer the precipitate to the crucible using a stream of wash solution (the rubber policeman may be used to loosen any AgCl particles which adhere to the beaker).
- Wash the precipitate in the crucible with the wash solution until it is free of Ag+ ions.
- Dry the crucible containing the precipitate at 1500C to constant weight.
C. Volumetric Analysis
Lab week 1
l. Standardization of silver nitrate (AgN03)
- Accurately weigh 3 samples (by difference) Of—O.2SUfreagent grade sodium chloride (NaCI) and place into 250 mL Erlenmeyer flasks
- Dissolve each standard NaCl sample in —100 mL of deionized water.
- Add —0.1 g of dextrin (a protective colloid) to each flask
- Add 1-2 drops (no more!) dichlorofluorescein indicator to each flask
- Titrate your NaCl standard solutions with 5% AgN03 solution to the endpoint (note the solution used— use the same one forpart 2!).
Lab Week 2 0.4
2. Determination of unknown containing chloride (Cl-)
a. Accurately weigh 3 samples (by difference) of—0.4 g of the unknown containing Cl- and place into 250 mL Erlenmeyer flasks b. Dissolve each unknown sample in —100 mL of deionized water.
Add g of dextrin (a protective colloid) to each flask
- Add 1-2 drops (no more!) dichlorofluorescein indicator to each flask
e. Titrate your NaCl standard solutions with 5% AgN03 solution to the endpoint
Il. PRELIMINARY RESULTS
- From your results in I.C.I. (Standardization ofsilver nitrate), calculate the real [AgN03J using each ofyour standard NaCl titration trials. Then, calculate a mean [AgN031.
- From your results in I.C.2. (Determination ofan unknown containing chloride), calculate the weight percent of Cl- in your unknown sample using each ofyour unknown sample titration trials. Then, calculate a mean wt% cr•
- From your results in I.B. (Gravimetric Analysis), calculate the weight percent of Cl- in your unknown sample using each ofyour unknown sample precipitation trials. Then, calculate a mean wt% CI-•
111. RESULTS (These will build up on the Preliminary Results in part Il above)
- From your results in l.c. 1. (Standardization ofsilver nitrate), calculate the real [AgN03] using each ofyour standard NaCl titration trials. Then, calculate a mean, standard deviation, and 95% confidence interval for the IAgN031
- From your results in I.C.2. (Determination ofan unknown containing chloride), calculate the weight percent of Cl- in your unknown sample using each of your unknown sample titration trials. Then, calculate a mean, standard deviation, and 95% confidence interval for the wt% Cl-•
- From your results in I.B. (Gravimetric Analysis), calculate the weight percent of Cl- in your unknown sample using each of your unknown sample precipitation trials. Then, calculate a mean, standard deviation, and 95% confidence interval for the wt% Cl-•
Email your instructor with the label of your chloride unknown — she will provide you with the actual wt% Cl- in your “unknown” sample.
IV. DISCUSSION
Are your results from the volumetric analysis of Cl- accurate? Are they precise? How do you know? What could be done differently to improve results?
- Are your results from the gravimetric analysis of Cl- accurate? Are they pregisg? How do you know? What could be done differently to improve results?
- Compare and contrast the gravimetric and volumetric methods of analysis. Be
sure to include information about ease of analysis, experimental error, accuracy, precision, pros/cons etc. of each method.