100+ Master’s Level Experts in Chemistry And Related Subjects Will Do Your Written Homework in 3-6 Hours

No matter what kind of academic paper you need, it is simple and secure to hire an essay writer for a price you can afford at Chemhomeworkhelp. Save more time for yourself.






Basic features

  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support

Ondemand options

  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading

Paper Format

  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Affordable prices


$10 / PAGE


$13 / PAGE

Our prices depend on the urgency of your assignment, your academic level, the course subject, and the length of the assignment. Basically, more complex assignments will cost more than simpler ones. The level of expertise is also a major determinant of the price of your assignment.

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.


Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:

Chemistry Homework Help- Chemistry Answers

College students looking for chemistry homework help tend to find specific topics uncomfortable and difficult to comprehend. Hiring experts online becomes the best option as they provide comprehensive and procedural solutions enabling students to grasp readily. Besides, it results in the submission of top-quality chemistry assignments suitable for students to score excellent grades in the subject. If you find any chemistry assignment tricky and with the potential to earn you undesirable grades, considering chemistry homework help online is essential.

With chemistry homework help, students get a seamless approach to submitting flawless and high-quality papers that significantly boost their overall score. Yet, it is essential to learn about a platform that delivers the best chemistry assignment help services. Here is what to know about an online assignment help service that gives first-rate chemistry solutions.


Get Quality Chemistry Homework Help Online

Most students term chemistry as an intriguing science subject full of exigent formulas, atoms, elements, chemicals, molecules, and compounds. Some students even find the subject challenging during the introductory period before getting to study independent concepts. Such a reputation has led students often asking, ‘can you do chemistry homework and deliver good quality papers?’ to anyone capable of helping them.

Chemhomeworkhelp.com understands such scenarios hence comprises a well-informed, passionate, and experienced team of chemistry helpers. They understand the chemistry subject well and can provide homework help to students seeking professional chemistry help online. Our chemistry experts can handle the assignment efficiently while providing explanations for a better understanding. Coupled with perfectly formatted, unique, and immaculate chemistry papers, you get top-quality chemistry papers that earn you the grade you desire.


Find Chemistry Help for All Your Chemistry Problems with Ease

Several chemistry homework help platforms promise to deliver the best services, but a few keep their end of the bargain. Unlike such services, Chemhomeworkhelp.com never disappoints whenever you need help with chemistry homework on our platform. But what makes us unique from the competition?

  • Guaranteed Excellent Grades: Different students have varying chemistry assignments that can affect their final results when they score low. Our chemistry homework helper can help submit the best paper for top grades.
  • Money-Back Guarantee: Whenever you pay for chemistry assignment help, you expect the best worth your money. Chemhomeworkhelp.com ensures you get the best service; if not, we’ll refund your money. We also offer refunds if you make double payments to ensure you are always satisfied with us.
  • Save Time: Getting research materials and finding time to write your paper can be time-consuming. The best approach is hiring an expert to help you with such instances and save you valuable time.
  • 24/7 Customer Support: When getting help with chemistry homework, you may, at times, require detailed solutions from company representatives. We ensure you get prompt customer support as we have reliable customer support to answer queries and complaints around the clock.


Untitled design 26

Find the Best Chemistry Homework Helpers for Your Chemistry Tests and Exams

Typically, most students find chemistry subject overwhelming, more so when assigned assignments that seem undoable. Some even have a bad attitude towards the subject, making it even harder to solve simple tests. This is the primary reason why most of them opt for chemistry homework help websites that offer such services.

When you hire the right platform, you gain access to the best chemistry tutor or helper who can make the subject enjoyable, simple, and exciting. Notably, you’ll get new ideas on how to handle such problems prepared procedurally. Online chemistry tutors can provide stepwise approaches while allowing you to get detailed explanations on some topics you find problematic. In turn, students can attend different chemistry exams and score high in this subject.

The Process of Paying Someone to Do My Chemistry Homework for Me

If the deadline is imminent and you have a chemistry assignment yet to be completed, hiring an expert becomes the best possible solution. But you can become confused wondering how to access professionals at Chemhomeworkhelp.com. The process is straightforward, whether you need high school or college chemistry homework help. However, paying our exerts depends on your assignment’s nature; soft copy, hard copy, or online class.

  • Soft Copy Chemistry Assignment: If you have a soft copy assignment in PDF, word document, or any other format, you can readily attach your chemistry assignment through the order form or mail it to us. Our customer support will evaluate your assignment and provide a quote. After payments, a chemistry paper will get to work on your paper immediately.
  • Hard Copy Assignments: For hard copy chemistry assignments, you need to take a clear and high-quality photo of the homework and attach it through our order form. In case you experience any difficulties, feel free to contact us for assistance.
  • Chemistry Online Classes: We also offer online classes for chemistry problems, which are solved in real-time. With this, you need to provide your login credentials, and we’ll assess your assignment and later provide a price quote. After settling your payments, our chemistry tutors will work on your assignment and deliver within your timeframe.

Finding Chemistry Homework Help Is Easy.

Today, chemistry homework help has become an essential tool for students to succeed in the subject. This is because online chemistry helpers simplify existing problems, making them seem simpler. Sequentially, students discover effective means of handling such problems and score high grades.

So, the next time you say, ‘I need help with my chemistry homework,’ Chemhomeworkhelp.com is the place to be as you’ll never regret choosing us. Let us know what you need, and we’ll gladly assign our proficient writers specializing in the topic to handle the problem for you. That said, our chemistry experts can provide below academic help within the subject.

Help with Analytical Chemistry Homework

Analytical chemistry is an approach used in science to determine a given substance or material’s chemical composition. It involves loads of lab work to separate, extract, residue, and filtrate while using different instruments to analyze either qualitative or quantitative. Lab reports hence come in to showcase your results to your professor. If you find it hard to do so, Chemhomeworkhelp.com can help you submit the best lab report.

Help with Physical Chemistry Homework

This is where physics interacts with chemistry, and students unfamiliar with physics basics are likely to fail. Typically, this chemistry concept focuses on molecular levels and energy exchange, which are the most difficult assignments. When you face such problems, the first thing is trying to learn where to get help with chemistry homework and get the grades you desire. We can help you understand the principles of physics chemistry and submit quality assignments.

Help with Quantum Chemistry Homework

It is no doubt quantum chemistry is the most complex topic as it combines both theory and lab reports, including quantum mechanics and physical models. It also includes computation chemistry and quantum theories, atoms and molecules. When assigned a quantum chemistry homework, you may become bemused and begin searching ‘quantum homework help chemistry,’ intending to find helpers online. Save the hassle and stress and hire a quantum chemistry expert at Chemhomeworkhelp.com.

Help with Organic Chemistry Homework

Organic chemistry is the study of organic compounds, including finding individual structures and learning how they react. Several organic concepts, such as planar geometry and hybridization, are challenging to students. With this, it requires organic chemistry homework help to enable students to ease through complex concepts. Chemhomeworkhelp.com consists of organic chemistry tutors to provide real-time solutions and written solutions from our top-rated chemistry helpers.

Help with Inorganic Chemistry Homework

Homework help high school chemistry, including colleges and universities, applies to inorganic chemistry, which involves compounds without C-H bonds. Like organic chemistry, students struggling with inorganic chemistry assignments can use our services to get prompt solutions from our experts. Chemhomeworkhelp.com hires the best team to ensure you get the best from us for inorganic chemistry assignment help.

Help with Chemistry Homework on Any Topic

Several other chemistry topics, including polymer chemistry and surface chemistry, can be uncomfortable to students. At Chemhomeworkhelp.com, we can help you get through any topic as we have highly qualified and chemistry experts on our platform. Besides, we offer chemistry homework help chat that ensures we remain in touch with your writer or interact with a chemistry tutor swiftly.

Can You Make My Homework Look Better?

Nothing makes Chemhomeworkhelp.com stand out in the industry than delivering premier chemistry assignments to students from different study levels. Whether you need AP chemistry homework help or have a problem with particular topics, we are who call. We have the best writers who provide procedural solutions to the problems while writing it perfectly without any grammatical errors. Besides, we provide comprehensive checking, editing, and proofreading services to guarantee authentic and flawless assignments even when you seek chemistry homework help balancing equations.

That said, yes! We can make your homework better and with higher chances of earning better grades. Our online chemistry tutors also play a vital role in providing real-time solutions to assignments on our websites, unlike using a chemistry help app. Chemhomeworkhelp.com, therefore, is the best platform that gives the best chemistry homework help in the industry.

Chemistry homework help has proven to become essential for students finding specific chemistry assignments tricky. Besides, it accompanies several benefits than getting top-quality papers to earn an A or B in the overall score. Chemhomeworkhelp.com, therefore, remains the right platform that gives unrivaled chemistry homework solutions to different students.


We know how important any deadline is to you; that’s why everyone in our company has their tasks and perform them promptly to provide you with the required assistance on time. We even have an urgent delivery option for short essays, term papers, or research papers needed within 8 to 24 hours.

We appreciate that you have chosen our cheap essay service, and will provide you with high-quality and low-cost custom essays, research papers, term papers, speeches, book reports, and other academic assignments for sale.

24/7 support

We provide affordable writing services for students around the world. That’s why we work without a break to help you at any time, wherever you are located. Contact us for cheap writing assistance.

"; Quantitative Analysis Of Iron Ore Questions - Chem Homework Help
Quantitative Analysis of Iron Ore Questions

Using Volumetric Glassware, Part 1


Using Volumetric Glassware, Part 2


CHEM 150L Iron Ore Calculations Tutorial (F20a)


Quantitative Analysis of Fe in Iron Ore

INTRODUCTION: Color is one of the easier properties of a solution to monitor. The color that is observed by the eye is dependent upon the wavelengths of light that are either absorbed or transmitted by a material, known as the spectrum of a solution. In addition to the wavelengths that are absorbed, it is also important to understand how efficiently a solution absorbs light. This can be quantified by a value called the extinction coefficient (also called molar absorptivity) and Beer’s Law:

A c = ε where:

A = absorbance

ε = extinction coefficient

= path length

c = concentration

The measured absorbance of a solution depends upon not only the extinction coefficient, but also on the concentration of the solution and the amount of solution the light must pass through (the path length). For a particular wavelength and cuvette size, ε and will be constants, so a plot of A vs. c should yield a straight line with slope = ε and intercept close to zero.

In this experiment, you will use a colorimetric method to analyze the % Fe by mass in a sample of iron ore. Samples of known concentration of the red-orange colored iron-phenanthroline complex ion will be prepared, and the absorbance of these solutions will be measured. These solutions are referred to as standard solutions. Once the relationship between the concentration of this complex ion and its absorbance is established, measurement of the absorbance values of similarly prepared iron ore solutions can be used to calculate the concentration of Fe in the prepared solutions and ultimately the % Fe in the iron ore sample.

SAFETY NOTES: Care should always be taken when working with acids. If any acid is spilled on your skin, wash immediately. Any acid spills on the lab bench should be cleaned up immediately. Always use a rubber bulb to fill pipets. Dispose of all colored solutions in the appropriate waste container.

PART I: Preparation of Standard Fe2+ Solutions

1. Watch the prelab video at https://www.youtube.com/watch?v=QJzPae48ZDo.

2. A stock Fe2+ solution has been prepared in advance by weighing the appropriate amount of iron(II) sulfate heptahydrate, FeSO4·7H2O, and dissolving it in water to make a solution that is approximately 9 × 10-4 M in Fe2+(aq).

3. Watch the video of the preparation of the standard solutions at https://mediaspace.minnstate.edu/media/1_q4ocbjnu. Record the precise concentration of the iron standard solution in your lab notebook from the video.

4. Four 50.0-mL volumetric flasks are obtained, and pipets are used to deliver 2.00 mL, 4.00 mL, 6.00 mL, and 8.00 mL of the stock Fe2+ solution into the different flasks.

5. A 150-mL beaker is obtained, and graduated cylinders are used to add the following three reagents to the beaker, followed by mixing. a. 10 mL of 10% hydroxylamine hydrochloride (keeps iron in the 2+ state). b. 20 mL of 1 M sodium acetate (buffer, prevents the pH from changing drastically). c. 50 mL of 0.30% o-phenanthroline (produces blood-red colored complex ion with Fe2+).

6. A graduated cylinder is used to add 16 mL of the three-reagent mixture to each volumetric flask containing the iron solution and also to a fifth flask containing no iron solution to serve as a blank (needed to calibrate the spectrophotometer).

7. Each flask is gently swirled, then diluted to the calibration mark with deionized water.

8. Each flask is stoppered, and the diluted solutions are mixed well by inverting 10 times and shaking each time while upside-down.

9. The solutions are allowed to react for 30 min for the colors to develop.

10. Calculate the concentration of Fe2+ in each of the diluted standard solutions using the dilution equation: MV M V ii f f = where Mi is the undiluted concentration (listed on the stock bottle), Vi is the amount of Fe2+ solution added by pipet, Mf is the diluted concentration, and Vf is the diluted final volume (flask volume). Round your concentrations to the appropriate number of significant figures.

PART II: Generation of the Visible Spectrum and Calibration Curve

1. Based on the color of the iron-phenanthroline complex ion and the results of the Exploring Color experiment, predict the approximate wavelength of maximum absorbance in the spectrum.

2. Watch the video of measuring the spectra of the standard solutions at https://mediaspace.minnstate.edu/media/1_6xxwcuv8.

3. The spectrometer is calibrated using the blank solution containing no iron.

4. After the solutions have reacted for at least 30 minutes, the absorbance spectrum is recorded for all 4 solutions.

a. The least concentrated sample is used first, and the cuvette is rinsed multiple times with each successive sample before recording the spectrum. The commands “Stop” → “Collect” → “Store Latest” are used to keep the spectra of all solutions on the screen.

b. The same cuvette and spectrophotometer is throughout this experiment.

c. The wavelength of maximum absorbance, λmax, for the most concentrated solution is determined. Record in your lab notebook both this wavelength and the absorbance for each of the standard solutions at this wavelength. (Refer to the data sheet on D2L.)

5. Using Excel, prepare a plot of Absorbance vs. Concentration for the four standard solutions. This means we want absorbance on the y-axis and concentration on the x-axis, so type your concentration data in column A and absorbance data in column B of the Excel spreadsheet.

a. Insert a linear trendline, and include the best-fit equation (modify the x and y variables to be meaningful labels) and R2 value on the graph.

b. You may stop at this point for Week 1.

► Question for thought: Why is it usually considered better practice to start with the lowest concentration and go in order to the highest concentration when taking a series of absorbance measurements?

PART III: Preparation and Analysis of Iron Ore Sample

1. A numbered vial containing an iron ore sample is obtained. This is your unknown. Record the unknown number in your lab notebook. (You have been assigned a random sample; refer to the data sheet on D2L.)

2. The full vial with iron ore is weighed to ±0.001 g. Record its mass.

3. The ore sample is carefully transferred to a clean, dry, 50-mL beaker.

a. This is done by placing the open vial up inside the upside-down beaker, then inverting the vial and beaker together.

4. The empty vial is reweighed. Record its mass, and use subtraction to determine and record the amount of ore transferred to the beaker.

5. Watch the video of weighing and dissolving the iron ore at https://www.youtube.com/watch?v=CD8GR30DLAs. Do NOT use the mass values stated in the video! (Refer to the data sheet on D2L.)

6. In the fume hood, 3 droppers full (several mL) of concentrated HCl is added to the iron ore sample.

7. The mixture is gently heated on a hot plate for 30-60 s (depending on the hot plate temperature) 3 until the dark solid has completely dissolved. It is ensured that the solution does not boil.

a. If white solid remains, it will dissolve when the water is added.

8. When the dark solid has completely dissolved, ~10 mL of deionized water is quickly added from a graduated cylinder.

a. Note: This is not the normal safe protocol. Typically, when diluting a concentrated acid, the acid should be added to water to aid in dissipating the heat generated from the dilution. Water should not be added to acid as it may cause the acid to splatter. Because we are using a small volume of acid in this procedure and adding a relatively large volume of water, there is not much risk of the acid splashing if the water is added smoothly and quickly.

b. Because hot HCl gives off dangerous fumes, the beaker is not removed from the fume hood until the sample has been diluted.

9. The iron ore solution is transferred to a 100.0-mL volumetric flask, taking care to rinse the beaker well in order to get all of the iron into the flask. Watch the video of the dilution process at https://mediaspace.minnstate.edu/media/1_jfkvj06i.

10. The solution is diluted to the calibration mark with deionized water and mixed thoroughly. This solution contains all of the iron that was in the original ore sample.

11. 1.00 mL of the iron ore solution is pipetted into each of three 50.0-mL volumetric flasks. (We will be doing three replicate measurements.)

12. A 150-mL beaker is obtained, and graduated cylinders are used to add the following three reagents to the beaker, followed by mixing.

a. 8 mL of 10% hydroxylamine hydrochloride.

b. 16 mL of 1 M sodium acetate.

c. 40 mL of 0.30% o-phenanthroline.

13. A graduated cylinder is used to add 16 mL of the three-reagent mixture to each 50.0-mL volumetric flask containing the iron ore solution and also to a fourth flask containing no iron ore solution to serve as a blank.

14. Each flask is gently swirled, then diluted to the calibration mark with deionized water.

15. Each flask is stoppered, and the diluted solutions are mixed well by inverting 10 times and shaking each time while upside-down.

16. The solutions are allowed to react for 30 min for the colors to develop.

a. Note that each of these solutions contains only one hundredth of the amount of Fe2+ in the original sample solution.

17. Watch the video of measuring the spectra of the iron ore samples at https://mediaspace.minnstate.edu/media/1_fx4v4ax3.

18. The spectrometer is calibrated using the blank solution containing no iron.

19. After the solutions have reacted for at least 30 minutes, the absorbance spectrum is recorded for all 3 solutions.

20. Record the absorbance of all three samples at the same λmax chosen for the standard solutions. (Refer to the data sheet on D2L.)

PART IV: Calculations

1. Use the best-fit equation determined from the standard solutions (Part II) to calculate the concentration of each of the three prepared samples of iron ore.

a. A visual inspection of the graph should give an estimate. To obtain more precise values, plug in the absorbance value for each sample into the Beer’s law trendline and calculate the concentration corresponding to that absorbance.

b. It is usually considered a better practice to calculate the concentration of each sample, from which you can determine the % Fe in the ore, and then take the average of the results, rather than to take the average absorbance at the beginning of the process and only do the concentration calculation once. This will make the error calculation easier.

2. Use the dilution equation to determine the concentration of Fe2+ in your 100.0 mL solution.

a. You will be computing Mi from Vi (the amount pipetted into each smaller flask), Mf (computed from the trendline), and Vf (the volume of the smaller flask).

3. Compute the number of moles of Fe2+ in the 100.0 mL solution using the concentration you just calculated.

a. This is equivalent to the number of moles of Fe2+ in your original ore sample.

4. Use the molar mass of Fe to compute the number of grams of Fe2+ in your original ore sample.

5. Divide the number of grams of Fe2+ by the mass of the ore sample (and multiply by 100) to determine the % Fe by mass in your ore sample.

6. Compute the average % Fe by mass and the absolute error (as the range divided by 2). Express your final result as % Fe by mass ± absolute error, rounded appropriately (refer to Experiment 1).

To aid in understanding the calculations, think about:

How many moles of Fe2+ were present in the 50.0 mL of sample that was prepared?

How many moles of Fe2+ were present in the 1.00 mL of solution that was diluted to 50.0 mL?

How many moles of Fe2+ were present in the original 100.0 mL solution prepared from the sample of iron ore?

How many grams of iron does this represent?

In your hand-in, you must show sample calculations associated with making the standard solutions and sample calculations for all steps associated with determining the final result for the % Fe in the ore sample.

Iron Ore Data Set 33

word image 800

Quantitative Analysis of Iron OreName:
Hand-In, Chem 150L, Fall 2020

Due Monday, Nov. 30, 11:59 pm


1. (2 points) For the iron-phenanthroline complex ion whose absorbance was measured, what color of light does the wavelength of maximum absorbance correspond to? How does this relate to the observed color of the solution? Explain using concepts developed in the “Exploring Color” experiment.

{Type answer here}

2. (4 points) Beer’s Law states that the absorbance of a substance in solution is proportional to its concentration in the solution. Absorbance Concentration describes a straight line whose y-intercept is ideally zero.

a) Include your properly-formatted absorbance vs. concentration graph for the standard solutions below.

{Paste absorbance vs. concentration graph here}

b) How well does your data fit Beer’s Law?

{Type answer here}

c) How does this affect your confidence in your results reported below for the iron ore samples? Explain.

{Type answer here}

3. (10 points)

a) What is your iron ore sample number? _____

b) (3 points) List the % Fe2+ by mass found from each of the three samples prepared from the iron ore solution, as well as the average % Fe2+ ± absolute error (rounded appropriately) for your iron ore sample.

{List values here}

c) (7 points) Show all calculations done in this experiment below, and briefly state/explain what you are doing in each. You must show one sample calculation for each unique type of calculation. This includes a sample calculation for the concentration of one of the standard solutions made during the first part of this experiment. It also includes one complete set of calculations needed to determine the % Fe2+ in the ore (for one of the samples) during the second part of the experiment. In addition, show the calculation of the absolute error. Use Equation Editor. Show units. Be careful with significant figures. “Use Equation Editor” means formatting your calculations with numerators on top and denominators on the bottom where appropriate, not just using the Equation function to write in-line equations like you would in a word processing program.

{Show calculations here}

4. (4 points) What specific steps in procedure or choice of equipment were taken to minimize the error in this experiment? There were many. List and briefly discuss as many as you can.

{Type answer here}

See the attached rubric for more detailed information about grading.


Explain color

Illogical answer or no answer.

0 points

Missing one answer.

1 point

Minor error.

1.5 points

Color of max absor-bance identified, 1 pt.

Reasonable explanation of observed color, 1 pt.

2 points

2 pts

Discuss graph

No graph and no answer.

0 points

Graph present but poor discussion of quality of data.

2 points

Minor errors in graph formatting, -0.5 pt each.

3 points

Properly formatted graph, 2 pts.

Reasonable discussion of the quality of data and implications for results, 2 pts.

4 points

4 pts

% Fe

0 points1 point2 points3 values listed and correct, 1 pt.

Avg ± error listed and correct, 1 pt.

Appropriate rounding, 1 pt.

3 points

3 pts


Equation editor not used.

0-1 points

2-3 points-0.5 pt for minor errors.

4-5 points

Calculations shown for standards (1 pt),

% Fe2+ (2 pts),

and error (1 pt).

Units (1 pt).

Sig. figs. (1 pt).

Explanations (1 pt).

6-7 points

7 pts

Discus-sion of minimi-zation of error

No answer given.

0 points

Only 1 or 2 examples with reasonable discussion.

2 points

Only 2 examples or no discussion.

3 points

At least 3 good examples (1 pt each) with reasonable discussion (1 pt).

4 points

4 pts
20 pts
Order a unique copy of this paper
(550 words)

Approximate price: $22